
DOCUMENT RESUME

ED 212 479 SE 036 090

AUTHOR Matthews, George E.
TITLE Verbalizing Mathematics Using APL.
PUB DATE Oct 81

-
c

NOTE 15p.; Paper presented at the Annual Meeting of the
American Mathematical. Association of Two Teaar
Colleges (New Orleans, LA, October, 1981).

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS) College Mathematics; *Computer Programs; Computer

Science; Educational Technology; Nigher Education;
*Mathematical Vocabulary; *Mathematics; *Mathematics
Education; Mathematics Instruction; Problem Solving;
*Programing: proof (Mathematics)

IDENTIFIERS *APL Programing Language; *Computer Uses in
Education

ABSTRACT'
The nature of "A Programing Language" (APL) is viewed

as unambiguous, consistent, and powerful. It is based on the notion
of functions as imperative verbs, and is used by a small but growing
number of mathematicians and computer programers. Three areas of
mathematical activity are addressed: calculation of arithmetic
expressions, evaluation of algebraic formulas, and computation of
algebraic processes. The use's of APL in each of these areas is
illustrated by elementary examples. Because of its design as a
language rich in primitive functions, with extensions created by
Operators and user-defined functions, APL is seen as a powerful tool
for mathematical exposition. (MP)

u**********************
* Reproductions supplied by EDRS are the best that can be made

from the original document.

offiminxistr or EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION

P4tre document has bow reproduced N
CENTER IERICI

received from the person or mot:aeon
ortabng n.

0 Minor changes have boon mode to snprove
reproduction (lushly

Pants of yaw or (minions &Med In this
mein do not necesserily represent Wood NE
position or policy

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Grow, P4 &Ds

TO THE EDUCATIONAL RESOURCES'
INFORMATION CENTER (ERIC)."

VERBALIZING MATHEMATICS USING APL
George E. Matthews
Associate Professor of Mathematics
Onondaga Community College
Syracuse, New York

Xf mathematics is something that people do, then math-.
.

ematical exposition should be rich in verb forms. However,

conventional algebraid notation is better suited for des-

cribing static results than for dynamic processes.

APL (an acronym for A Programming Langulge) is a modern

mathematical notation that is unambiguous, consistent and

powerful. Furthermore, it is based on the notiAn of functions

as imperative verbs. As such, it is an effective means of

communication, for both people an computers. Created by the

mathematician Kenneth Iverson and published in 1962, APL now

is used Ls a small but growing number.of mathematicians and

computer programmers:-

This. paper addresses three areas of mathematical activity:

calculation of arithmetic expressions, evaluation of algebraic

formulas, and computation oralgebraic procisies. The uses of

APL in each of these areas is illustrated by elementary examples.

OVERVIEW OF APL

A few comments will suffice to characterize APL for those

who are not familiar --fith its design. Further details can be

found in works such as (Falkoff and Iverson, 1973), (Gilman and

Rose, 1976), (Iverson, 1972 a'and b), and (Peelle, 1979);

APL may be viewed as an alternative mathematical notation

that is directly executable on machines (computers). It is

structured like a "natural" algorithmic language, with functions

serving as verbs, constants-as its nouns and variables as its

pronouns.

APL uses arrays of constants as basic data, it has a com-

prehensive set or primitive furctions, and uses operators and

User7defined functions to-f the scope of the defined

symbols. There is virtuall- restriction on choices of names

for functions or variables in APL.

All functions in APL are treated alike, in a right-to-left,

arithmetic syntax; parentheses are needed only for expressions

used as left-hand inputs. Statements in APL result in either

assignment of values to named storage, branching to anither

numbered-statement, or display of computed results.

APL uses many familiar symbols from conventional algebra

but regularizes their syntaI and assigns special meaningr for

both familiar and new symbols. The consistent form of all

function usage in APL results in concise expressions that are

easy to comprehend once initial familiarity is achieved. The

points mentioned above can best be seen throur5h specific

examples.

ti *

ARITHMETIC CALCULATIONS

The basic operations of arithmetic (addition, subtraction,

Multiplication,"division, and exponentiation) are viewed as

functiond with two inputs. Any expression containing such

arithmetic symbols is viewed as a directive to calculate a value.

Thus 2 3 is 5, 3 4 isle, and 2 * 5 is 32.

If an expression' appears on the right side of a function

symbfl, it is evaluated before the left input (if any). As

usual, parentheses can be used to alter this built-in-order of

operations: Hence 2 + 3.x 4 is 14- and (2 + 3) x 4 is 20

and 4 x 2 + 3 is also 20.

APL adopts this simple and uniform order of operations so

that the great number of functions defined in APL can be used

easily, without regard to complicated rules of precedence or

heavy use of parentheses. The symbols for the basic operations

are also used for related single-input functions; additional

useful arithmetic function:5'4re also defined, as shown in figure 1.

The single-input functions are called monadic and the functions

with two arguments are called dyadic.

t.

Identity,

Negation,

Signum,

Reciprocal,

Power of e,

/Muria log,

ARITHME.CIC SYMBOLS Ind APL

AdAition

Subtraction

Multiplication

'Division

Exponentiation

Logarithmic

f Ceiling,

Floor,

Factorial,

I Magnitude,

o Pi times,

M Matrix inverse,

Figure 1. Monadic and dyadic arithmetic functions.

Maximum

4tnimum

'Binomial

Residue

Circular, etc.

Matrix divide

A.

For example, it the subtraction sign .is also used for

,negation, then obviously the division sign may be used for

reciprocals. Thus - 1 is -1 and t 4 is 4.25. The vertical T.

line is used for absolute value as in 1-5 which is 5 and

for division remainder as in 3 I 14 which is 2. Factorial

three is written i 3 and two pi is written o 2. The square

root of three may be represented as 3 * * 2 , in a manner

which easily extnds to any desired root.

With the full complement of propositional (logical and-

relational) functions useable in APL, it is possible to make

arithmetic statements without using,additional notations out-

7

side APL. For example, 0 x 3114 means thit 3 is not an exact

divisor of 14. Conditional valuations can also'be expressed

directly as in 3 + 2 x 4 < I, which is 3 + 2 if 4 is, less than

X, otherwise it is just 3 . More examples of this scrt-will be

illustrated in'the sequel.

By far the greatest attribute of APL is its handling of

arrays (lists, tables, etc.). All of the elementary functions 4-1-

extend to arrays on an element-by-element basis. Thus + 1 2 4

is 1 0,5 0.25, 2 * 1 3 4 is 2 6,8, 3 2+ 44 is 7 8. Note

that single numbers are extended as needed to match the array.
O

Special array-based functions are defined in APL to provide

ease in generating, manipulating, and restructuring arrays; such

functions are called mixed functions. Additionally, the use of

operators, which extend the scope of the arithmetic and propo-

sitional functions, allows concise expression.of simple ideas.

a

The arithmetic mean provides an example: If X is a liit'of

numbers, then +/ X is the sum of these niunbers and pX is the

count of these numbers. The former expression uses the reduction

operator and the latter uses the mixectfunction shape. Thus

(X) p X the simple arithmetic mean. See figpre 2 for

specific cases of the simple mean, weighted mean, and mean of

selected scores.

.ARITHMETIC MEANS IN APL

r

X +:78 90 83 75 79
+/X

405
pX

5
(+/X) + pX

81,
SIMPLE MEAN

SURES 4- 84 78 90 83 79
WTS + 2 1 1 1 1

WTS x SCORES
148. 78 90 83 79

4*/WTS x SCORES) + +/WTS
83

. WEIGHTED MEAN

X + 78 90 837,5 79
HIGHEST4 4- 4 t XE,X,
84 HIGHEST4

84 90 83 79 78
(+/WTS x 84 HIGHEST4) + +/WTS

83
,* ADJUSTED MEAN

a FIGURE 2. EXAMPLES OF OPERATORS AND MIXED FUNCTIONS

The expression for the adjusted mean shown in figure 2 could

be read as "SUM WEIGUTS TIMES 84 WITH it HIGHEST X all OVER SUM WEIGHTS."

The underlined words represent the dynamicaparts of the expitession'

and correspond to operators (SUM), APL primitives (TIMES, WITH,

OVER), and a user-defined function (HIGHEST). Appropriate defi-
,

nitlans of APL programs for these verbs, are shown in Appendix two

and explained later. Also, illustrated in the above expressions

are the pronouns (variables) WEIGHTS and X, the nouns (consitants)

84 and 4, and the use of'"all4 to denote the required parentheses.

ALGEBRAIC EVALUATIONS

In the arithmetic calculations just cited, the variables were

merely convenient names for specific constants. More generally,

variables are used to represent indeterminates (parameters'or

unknowns) is algebraic formulas.

In a sense, such formulas represent hypothetical statements

that have meaning (value) only when certain other information is

given. APL has a convenient way to represent'auth formulas as

character strings which can be evaluated later using the built-

in Execute function. a

The statistical variance of a list of data, defined as the

mean squared diviations from the mean, can be represented by

various formulas. A literal translation of the definition into

APL is easy but not very readable. Note the triply-nested

parentheses shown in the first formula in figure 3, with division

being the final function performed.

A simpler computational formula expresses variance as the ,

mean of the squares minus the square of the mean. This formula
has only doubly-nested parentheses, with subtraction being the

- final function performed;

7

.4 -
'1_ ----r,. .. was.. aMwmirewor -

:"-

a EVALUATING STATISTICAL VARIANCE
. .

,

16

16

* ' (t/ (X (+/X1 +'pX) * 2) + pX

F2 ((+IX * 2) + pX) ((+/X) + pX) * 2

X * 2 4 A 8 10 12 14
a Fl

a F2

X * 7 946 8 8
a Fl

1.04.
F2

1.04

FIGURE 3. EXAMPLES OF FORMULAS-AS APL STRINGS

The formula in any case is enclosed in quotes, which mean

that the symbols therein are characters without' intrinsic

meaning or value. The Execute function, denoted by t , has the

effect of sripping off the quotes and interpreting the string

As if it were a statement directly entered by the user. This

system allows several formulas to be stored as =fed character

strings for latertitecall and evaluation. Such strings may .

contain functions, constants and variables as desired. After

appropriate values- have.been specified for the variables, the

formulas can be evaluated.

A common algebraic activity is graphing functions. Figure 4

shows a manner of graphing the function (X,- 3)(X - s) on the

domain of 1,2,3,4,5,5,7 The technique involves character

strings, the Execute function, the outer product operator, and

indexing. The details need not concern us here, for. the example is

tended merely to illustrate the scope or algebraic, evaluations in

0.
,

GRAPHING\ALGEBRAIC FUNCTIONS ")

F (X-3) x X-5
X * 1 2 3 4 5 6 7
G 4- Y i F

8-3'0 -1 0 3 6
(0 = A F) / X

3 5
IF RANGE 4- 9 - x10

8 7 5 4 3 2 1-0 -1
(10 2 p IRANSE).' C 1 + RANGE .=Y7

g*
7
6

M.

5
4
3 *
2

1

0 * *
1 *

C

1'

ft FIGURE 4. USING OUTER PRODUCT TO INDEX A SYMBOL STRING

Inasmuch as algebraic identities constitute a major interest in

mathematics, it is appropriate to illustrate the use of APL in alge-
.

braic proofs. Figure 5 shows a proof that the sum of n integers

starting from 1 equils half the product of n with n + 1 . Each state-

ment on the left is equivalent to the preceding statement for the

reason stated on its right, Theorem; such is this can be "checked" by

executing the statements for_speCific chdioes of n. .As a result, an

APL proof can be more copvincing than a mere'abstract argument.

A PROVING IDENTITIES IN APL

A DEFINED FOR FINITE N
n +11 0 IN + IS ASSOC h COMM
R ((+/04) + (+/O N)) + 2 X 4.4 (X + X) s 2
a (+/ (04) '+ (.0h N)) + 2 + IS ASSOC 4 COMM
ft (+1 N p'14+1)+ 2 - LEMMA
A ((N+1) x N) + 2 DEF OF x

n FIGURE 5. EXAMPLE OF AN APL PROOF

.. -

ALGORITHMIC COMPUTATIONS

, g

The uses of APL illustrated in the foregoing are all for.

immediate execution on the'compUter. Nevertheleis, most APL
".

users see it as primarily a programming,anguage, useful for

writing stored programs. Much of mathematics involves algorithmic

processes;.APL can be invaluable for defining And exploring such .

Procedures.

An example of an interactive program is shown in figure 6.

This program illustrates the structure and use of APL programs, -,

specifically a monadic user-defined function with explicit-result.

Lines,4-6 constitute a loop, where the successive iterations are

performed. Computer prograthers will note tne use of leading

decision.in line 4 and unconditional branching In line 6. -Although

APL is sometimes criticized for lacking built-in logic control

structures, they k..an 6e simulated as heeded or obviated-by approp-

riate primitives and operators.

41k

ft NEWTON'S METHOD FOR SQUARE ROOT'

V ANS 4- FINDROOT N Q. ;EPS
Cl) EPS 4- 0.0001.
C23 *GUESS:
C3] G 4- 0
CIO TST: (EPS = 1.N.- G*2) / DUN
C53 G 4- 0.5 X G N
C63 4 TST
C73 DUN: ANS 4- G
CS] V

FINDROOT 72.25
GUESS

a
8.5

a FIGURE 6. COMPUTING SQUARE ROOT BY ITERATION

am.11 IIMIllel e immOIMININI=. .111111.1111

410

V

Theearlier.reference to a procedure for finding a weighted

mean can now be more
;
fully explained.. (See figure 2). The

process, of addihi numbers is represented ih APL by the plus

reduction df a lists for example, +1 78 90 83 75 79 is the same

as 78+90+03+75+71 vhich is 405. An alternative to "using the

symbols +1, is using a familiar verb such as SUM, after having

'.defined its meaning in 'APL. (See Appendix two). A

The verbs TIMES, WITH, OVER are actually the APL primitive

functions.Multiply, Join, and Divide. As shown in Appendix two,

they can be given arbitrary name's by means of app ropriate programs.

Incidentally, the underlining us.ed for these verbs is a stylistic

device and is not required.

Finally, the function HIGHEST is a dyadic user-defined functNion

with - explicit result: _It uzies three APL primitives Grade down,

Indexing, and Take. It is the first function to be. executed in the

expression within parentheses.

The expression (SUM WEIGHTS TIMES 84.WITH'4 HIGHEST X) OVER

. SUM WEIGHTS willproduce the results as shown,in Appendix*two, if

0

o.

the verbs and pronouns have been-given meanings as shown. Further

ditaik on programming uses of APL can be found in (Gilman and Rose,

1976), (Harms and Zabinski, 197T), and (Letage, 1978).

4

1

0

..

40

. .
.4

CONCLUSION

The thrust C2of this paper has been illustrating the

-dynamic aspect of Mathematical.expressions. Appendix three

contains a comprehentive'list ,of verb forms associated with

API; primitives, Because of its design as a language rich in

primitive functions, with extensions created by operators and

user-defined functions, APL is a powerful tool for math-

ematical exposition.

4

APPENDIX ONE---References

-Fa/koff, A.D. and K.E. Iverson, "The Design of APL," IBM Journal of

Research and Development. 17, No. 4, July 1973, 324-334.

o

Gilman, L. and A.J. Rose, APL--An interactive Approach,2nd ed.,Revised,

'Wlloyf.New York, 1976.

Earms,'H. and M.P. Zabinski, Introduction to APL and Computer Pro-'

gramming, Wiley, New YOrk, 1977..

Iversbn, K.E.,Algebra: An Algorithmic Treatment, Addison-Wesley,

Menlo Park, lal.,1972.

Iverson, K.E., APL in Exposition, IBM Corporation, TR320-3010, Jan. 1972.

LePage Applied APL Programming, Prentice-Mall, Englewood Cliffs,

N.

POsillit A.A., "T' aching Mathematics Via APL (A Programming Language),"

Mathematics Teacher, 72 (1979) ., 97 -116.

' A44,PENDIX TWO---SOME APL PROGRAMS

. V R 4- SUM LIST
' C13 R +1 LIST
.C23 V

R X TIMES Y
CIA R * X x Y
C23 V

V R 4' X -WITH Y
C13 R *- X Y

C23 V

R * X OVER Y
C13 R * X + Y
C23 V

,

y R N HIGHEST X
C13 R * N t XCVX3
C23 V

WEIGHTS * 2 lA 1 1

X 78 90 83 75 79

i (SUM WEIGHTS TIMES 84 WITH ''. HIGHEST X) OVER SUM WEIGHTS
83

14

o n

(3 .-

APPENDIX THREE -- -APL PRIMITIVES (Basic verbs)

4 is less than

is not greater than

* is equal to

logically or

* logically and

* idAntity, add.

x signum, multiply

* power of e, exponentiate

r ceiling, take maximum

factorial, binomial

pi times, take sine, etc.

k is not less than

> is greater than

* is not equal to

logically negate

logically nor

* logically nand

- opposite, subtract

I. reciprocal, divide

natural log, logarithm

I. floor, take minimum

I magnitude, take residue

M matrix inverse, matrix divide

4- specify d is a member of

$ take from array . drop from array

i locate first inCex, count up El index array

expand array / compress array

p shape cf, reshape , ravel. join arrays

1 de:ode

t execute

P grade down

flip, spin

Aft transpose, section

? roll once, deal vector

T encode

V format characters, format precision

4^ grade up

(O. reverse, rotate

